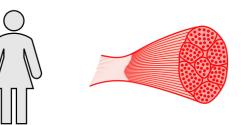


Association of body composition, physical performance and nutritional status in older adults

Sandra Unterberger, Rudolf Aschauer, Patrick A. Zöhrer, Agnes Draxler, Bernhard Franzke, Eva-Maria Strasser, Karl-Heinz Wagner and Barbara Wessner



Body Composition & Age

Body composition: determinant of overall health, fitness and nutritional status

Aging process is characterized by changes in body composition that have important consequences on health and physical function

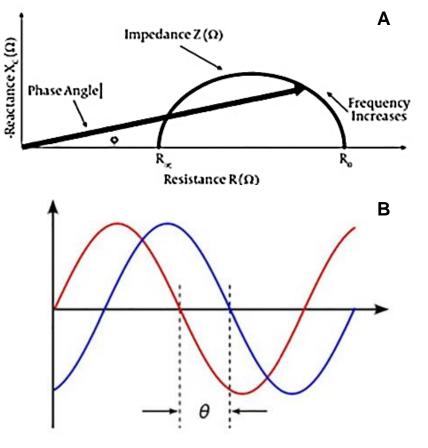
- Ψ muscle mass
- alterations in muscle architecture
- muscle metabolic changes
- fat accumulation within muscle

- ↑ body fat
- redistribution from subcutaneous to abdominal fat
- ψ bone density

• $\mathbf{\psi}$ total body water

Assessment of Body Composition

- Several methods available to assess body composition
 => debate on "gold standard"
- Bioelectrical impedance analysis (BIA)
 - widely accepted, validated, simple, non-invasive, and convenient method
 - Criticism:
 - considered to be less valid than dual-energy X-ray absorptiometry (DXA) in determining muscle and fat mass.
 - ==> use raw BIA parameters, like resistance, reactance and especially phase angle (PhA)

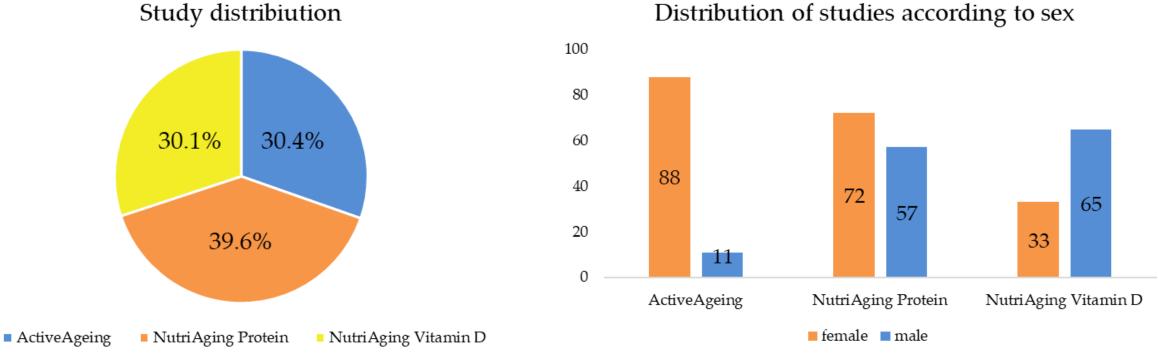


Phase angle

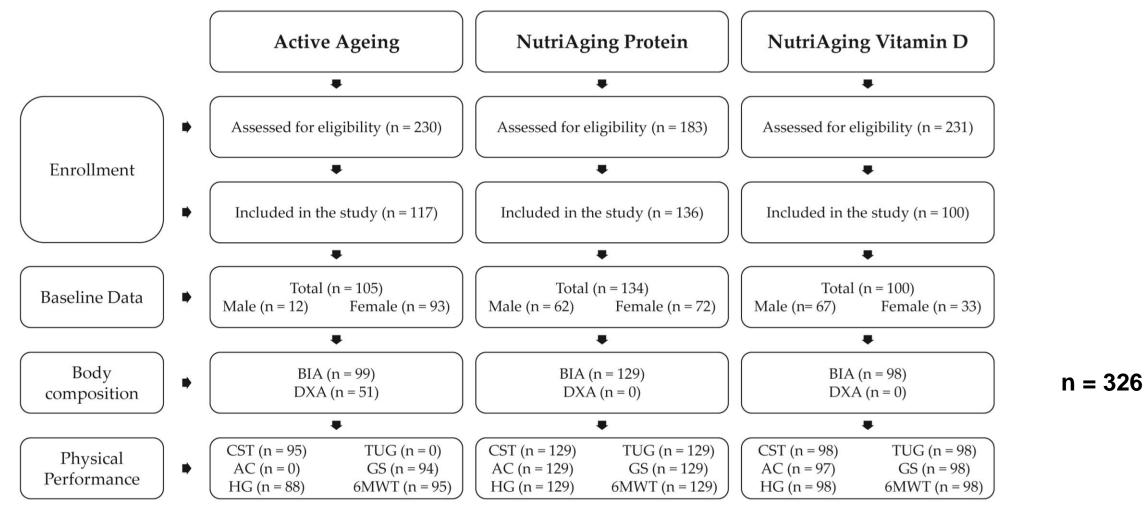
- Impedance is compounded of two parts, resistance, and reactance.
- Phase angle (PhA) is calculated from arctangent of reactance to resistance ratio (Figure A)
- Description of the angular shift (phase difference) between the sinusoidal waveforms of voltage and current (Figure B)
- ↓ PhA ==> indicate a decreased cell integrity or cell death

Bartoletti et al. 2021

Aim of the study

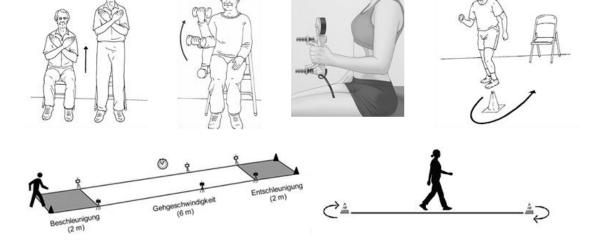

- 1) Description and Validation of sex-specific raw BIA values in an older population with DXA parameters
- 2) Determination of the association between PhA, physical performance and nutritional status

Distribution of studies/participants


Distribution of studies according to sex

14/10/2022 Sandra Unterberger, BSc MSc

Participants' flow.: RT = resistance training, CST = 30-s chair stand, AC = 30-s arm curl, HG = handgrip strength, TUG = timed up and go test, GS = gait speed, 6MWT = 6-min walk test


Outcomes

Body compositon

Physical Performance

- PhA, reactance, resistance
- Lean body mass (extracellular + body cell mass), body fat, total body water,
- Skeletal Muscle Mass (Janssen et a. 2000)
- DXA
 - FFM total, arms, trunk, legs, head
 - FM total, arms, trunk, legs, head

Characteristics of study population	total	female	male	p-value	effect size
Sex [f/m], (%)	326 (100%)	193 (59.2%)	133 (40.8%)	0.001	
Study Origin [Study 1/ Study 2/ Study 3], (%)	99 (30.4%)/ 119 (39.6%)/ 98 (30.1%)	88 (45.6%)/ 72 (37.3%)/ 33 (17.1%)	11 (8.3%)/ 57 (42.9%)/ 65 (48.9%)	< 0.001	0.440
Age [years]	75.2 ± 7.2	77.0 ± 7.2	72.7 ± 6.4	< 0.001	0.614
Body weight [kg]	76.2 ± 14.8	70.7 ±13.0	84.3 ± 13.4	< 0.001	-1.036
Height [m]	1.7 ± 0.1	1.6 ± 0.1	1.8 ± 0.1	< 0.001	-2.440
Body mass index [kg/m ²]	27.5 ± 4.7	27.8 ± 5.0	27.1 ± 4.2	0.201	0.140
BMI categories (<25.0 kg/m², 25.0-29.9 kg/m², ≥ 30.0 kg/m²) [n, %]	89 (27.3%)/ 155 (47.5%)/ 82 (25.2%)	54 (28.0%)/ 80 (41.4%)/ 59 (30.6%)	35 (26.3%)/ 75 (56.4%)/ 23 (17.3%)	< 0.010	0.169
Waist circumference [cm], n = 315	94.7 ± 12.2	90.6 ± 11.3	100.4 ± 11.1	< 0.001	-0.876
Hip circumference [cm], n = 315	105.1 ± 9.6	106.0 ± 10.5	104.0 ± 8.1	0.048	0.218
Waist to Hip Ratio [-], n = 315	0.9 ± 0.1	0.9 ± 0.1	1.0 ± 0.1	< 0.001	-1.806
Arm circumference right [cm], n = 310	30.3 ± 3.4	29.8 ± 3.5	31.0 ± 3.2	0.003	-0.346
Calf circumference right [cm], n = 310	37.1 ± 3.2	36.5 ± 3.2	37.9 ± 3.0	< 0.001	-0.449

Note. Values are shown as mean \pm standard deviation or as absolute and relative frequencies. p-values refer to differences between groups (independent-samples t-test, Chi Square Test). Effect size is given as Cohen's d for continuous variables (0.2 = small, 0.5 = moderate, 0.8 = large) and Cramer's V for categorical variables (0.1 = small, 0.3 = moderate, 0.5 = large).

Nutritional status	total	female	male	p-value	effect size
Energy intake [kcal]	$1,748.9 \pm 647.4$	$1,552.7 \pm 503.1$	$2,032.9 \pm 725.2$	< 0.001	-0.795
Energy intake [kcal/kg BW]	23.4 ± 8.8	22.0 ± 8.6	24.5 ± 9.0	0.078	-0.206
Protein intake [g/day]	61.9 ± 25.8	55.6 ± 22.6	71.0 ± 27.4	< 0.001	-0.622
Protein intake [g/kg BW/day]	0.83 ± 0.36	0.81 ± 0.38	0.85 ± 0.33	0.272	-0.128
Carbohydrates [g/day]	183.6 ± 75.2	168.5 ± 63.8	205.5 ± 84.7	< 0.001	-0.506
Carbohydrates [g/kg BW/day]	2.48 ± 1.09	2.47 ± 1.08	2.49 ± 1.11	0.878	-0.018
Fat intake [g/day]	72.2 ± 36.1	62.5 ± 27.1	86.4 ± 42.5	< 0.001	-0.698
Fat intake [g/kg BW/day]	0.96 ± 0.46	0.91 ± 0.43	1.04 ± 0.51	0.025	-0.271

Note. Values are shown as mean ± standard deviation. p-values refer to differences between groups (independent-samples t-test). Effect size is given as Cohen's d for continuous variables (0.2 = small, 0.5 = moderate, 0.8 = large).

p-value

< 0.001

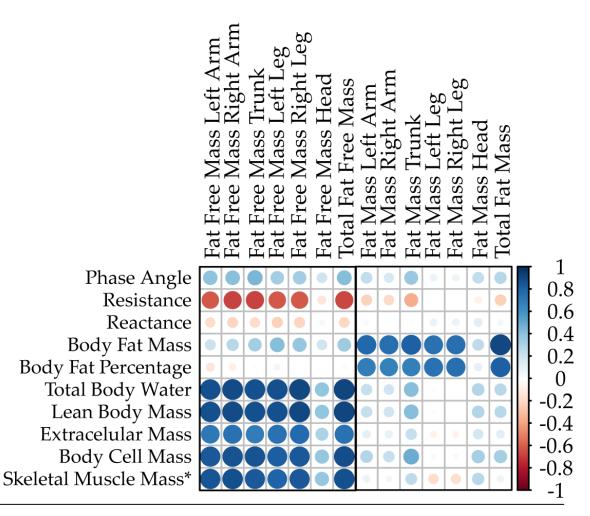
< 0.001

< 0.001

< 0.001

Bioelectrical impedance parameter (n = 326) female total male Phase angle [°] 5.3 ± 0.7 5.0 ± 0.7 4.7 ± 0.7 Resistance [ohm] 495 ± 79 534 ± 68 438 ± 57 Reactance [ohm] 43 ± 8 44 ± 7 40 ± 7 **Resistance/height [ohm/m]** 300 ± 59 335 ± 45 249 ± 33 Reactance/height [ohm/m] 26 ± 5 28 ± 5 23 ± 4 40.6 ± 8.9 34.6 ± 4.0 49.5 ± 6.3 55.6 ± 12.2 47.2 ± 5.5 67.7 ± 8.6 26.0 ± 3.3 29.7 ± 6.2 35.2 ± 5.4 25.8 ± 6.8 21.2 ± 3.4 32.5 ± 4.8 20.6 ± 8.9 23.3 ± 9.1 16.6 ± 6.7 19.2 ± 5.4 26.8 ± 9.2 32.0 ± 7.4 24.6 ± 7.6 19.1 ± 3.3 32.7 ± 4.2 0.06 ± 2.44 0.08 ± 2.52 0.04 ± 2.33 12.4 ± 3.6 11.9 ± 3.6 13.0 ± 3.5

< 0.001 Total body water [1] < 0.001 Lean body mass [kg] < 0.001 Extracellular mass [kg] < 0.001 Body Cell Mass [kg] < 0.001 Body fat mass [kg] < 0.001 Body fat percentage [%] < 0.001 Skeletal muscle mass [kg] < 0.001 **Physical performance parameter Physical Performance Score**, n = 315 0.859 30-s chair stand test [reps], n = 322 0.009 Handgrip strength [kg], n = 315 23.2 ± 6.3 41.2 ± 7.4 < 0.001 30.7 ± 11.2 **30-s arm curl test [reps] n = 226** 17.1 ± 4.0 15.9 ± 3.5 18.1 ± 4.2 < 0.001 Timed up and go [s] n = 227 5.4 ± 1.1 5.8 ± 1.1 5.1 ± 1.1 < 0.001 Gait speed [m/s], n = 321 2.0 ± 0.6 1.8 ± 0.5 2.4 ± 0.5 < 0.001 6-minute walk test [m], n = 322 529.6 ± 141.4 471.2 ± 127.4 612.6 ± 117.0 < 0.001 Values are shown as mean ± standard deviation. p-Values refer to differences between groups (independent-samples t-test).

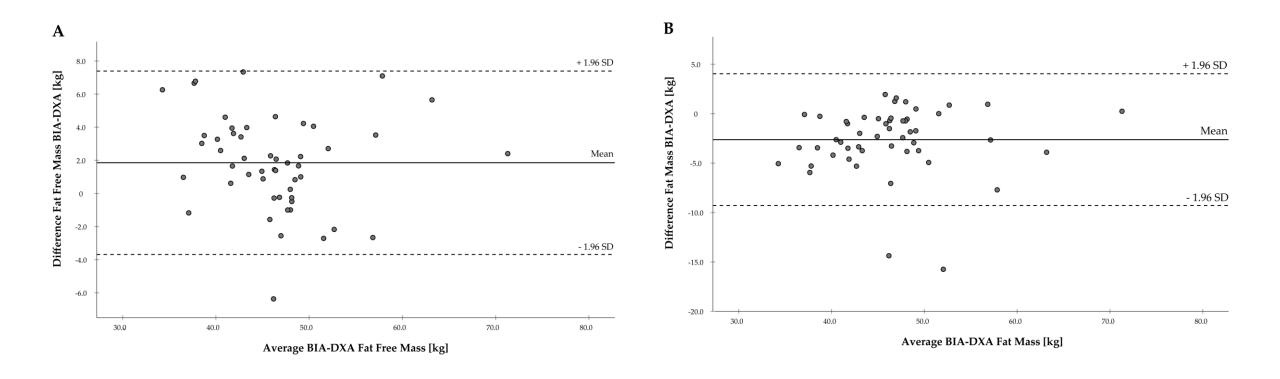

Agreement of body composition parameters by BIA and DXA I

Strong

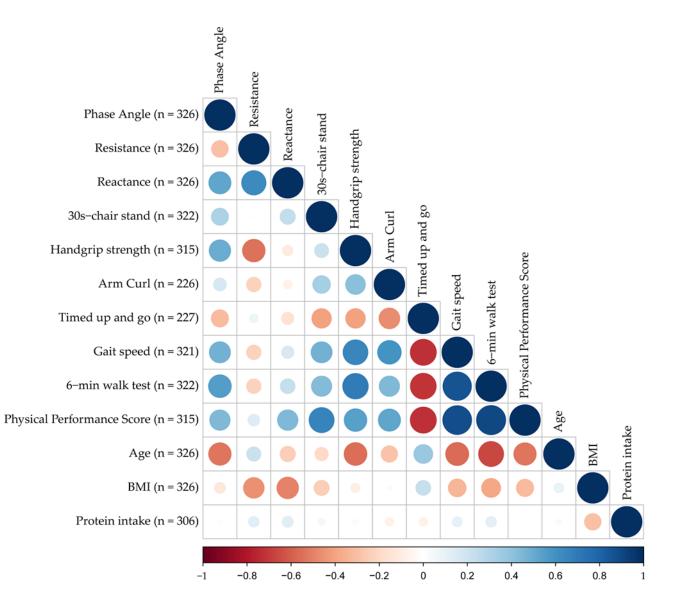
- FFM & Lean Body Mass
- FFM & device-derived BIA parameters
- FFM & population-specific parameters
- FFM & Resistance
- Body fat & FM

Moderate

• PhA & FFM



Agreement of body composition parameters by BIA and DXA II



Association between BIA raw parameters, physical performance, age, BMI and protein intake

PP			Multiple R	egression Models			PP	Multiple Regression Models					
tests	Model	R ²	F	Ind. Variables	В	β	tests	Model	R2	F	Ind. Variables	В	β
CST	Model 1	0.108	12.313***	Constant Age Sex BMI	20.294*** -0.055* 0.675* -0.141***	-0.138 0.118 -0.235	TUG	Model 1	0.307	32.605***	Constant Age Sex BMI	-1.647 0.078*** -0.668*** 0.067***	0.361 -0.319 0.276
	Model 2	0.142	12.607***	Constant Age Sex BMI PhA	12.827*** -0.016 0.351 -0.132*** 0.885**	-0.040 0.061 -0.221 0.226		Model 2	0.320	25.868***	Constant Age Sex BMI PhA	-0.122 0.071*** -0.597*** 0.065*** -0.196*	0.328 -0.285 0.272 -0.124
HG	Model 1	0.774	351.328***	Constant Age Sex BMI	67.182*** -0.571*** 15.534*** -0.013	-0.369 0.704 -0.005	GS	Model 1	0.575	141.297***	Constant Age Sex BMI	5.625*** -0.040*** 0.390*** -0.029***	-0.500 0.347 -0.244
	Model 2	0.781	272.191***	Constant Age Sex BMI Resistance	79.156*** -0.554*** 13.849*** -0.160 -0.017**	-0.358 0.628 -0.066 -0.125		Model 2	0.585	109.820***	Constant Age Sex BMI PhA	44.851*** -0.036*** 0.358*** -0.028*** 0.091**	-0.449 0.318 -0.237 0.118
	Model 3	0.784	220.890***	Constant Age Sex BMI	69.060*** -0.508*** 13.702*** -0.138	-0.328 0.621 -0.057	6MWT	Model 1	0.682	224.011***	Constant Age Sex BMI	1597.978*** -11.329*** 81.936*** -8.965***	-0.592 0.296 -0.309
AC	Model 1	0.136	11.549***	Resistance PhA Constant Age Sex	-0.015* 1.031* 30.298*** -0.188*** 1.977***	-0.110 0.067 -0.240 0.261		Model 2	0.701	183.220***	Constant Age Sex BMI PhA	1322.378*** -9.826*** 71.023*** -8.684*** 32.042***	-0.513 0.257 -0.299 0.170
	Model 2	0.155	10.110***	BMI Constant Age Sex BMI Resistance	-0.030 40.573*** -0.200*** 0.993 -0.151* -0.012*	-0.034 -0.255 0.131 -0.174 -0.241		Model 3	0.714	155.229***	Constant Age Sex BMI PhA Resistance	1443.476*** -9.849*** 40.679** -11.397*** 57.426*** -3.704***	-0.514 0.147 -0.392 0.305 -0.206

PP			Multiple R	egression Models			PP	Multiple Regression Models					
tests	Model	R ²	F	Ind. Variables	В	β	tests	Model	R2	F	Ind. Variables	В	β
CST	Model 1	0.108	12.313***	Constant Age Sex BMI	20.294*** -0.055* 0.675* -0.141***	-0.138 0.118 -0.235	TUG	Model 1	0.307	32.605***	Constant Age Sex BMI	-1.647 0.078*** -0.668*** 0.067***	0.361 -0.319 0.276
	Model 2	0.142	12.607***	Constant Age Sex BMI PhA	12.827*** -0.016 0.351 -0.132*** 0.885**	-0.040 0.061 -0.221 0.226		Model 2	0.320	25.868***	Constant Age Sex BMI PhA	-0.122 0.071*** -0.597*** 0.065*** -0.196*	0.328 -0.285 0.272 -0.124
HG	Model 1	0.774	351.328***	Constant Age Sex BMI	67.182*** -0.571*** 15.534*** -0.013	-0.369 0.704 -0.005	GS	Model 1	0.575	141.297***	Constant Age Sex BMI	5.625*** -0.040*** 0.390*** -0.029***	-0.500 0.347 -0.244
	Model 2	0.781	272.191***	Constant Age Sex BMI Resistance	79.156*** -0.554*** 13.849*** -0.160 -0.017**	-0.358 0.628 -0.066 -0.125		Model 2	0.585	109.820***	Constant Age Sex BMI PhA	44.851*** -0.036*** 0.358*** -0.028*** 0.091**	-0.449 0.318 -0.237 0.118
	Model 3	0.784	220.890***	Constant Age Sex BMI Resistance	69.060*** -0.508*** 13.702*** -0.138 -0.015*	-0.328 0.621 -0.057 -0.110	6MWT	Model 1	0.682	224.011***	Constant Age Sex BMI Constant	1597.978*** -11.329*** 81.936*** -8.965*** 1322.378***	-0.592 0.296 -0.309
AC	Model 1	0.136	11.549***	PhA Constant Age Sex	1.031* 30.298*** -0.188*** 1.977***	0.067 -0.240 0.261		Model 2	0.701	183.220***	Age Sex BMI PhA	-9.826*** 71.023*** -8.684*** 32.042***	-0.513 0.257 -0.299 0.170
	Model 2	0.155	10.110***	BMI Constant Age Sex BMI Resistance	-0.030 40.573*** -0.200*** 0.993 -0.151* -0.012*	-0.034 -0.255 0.131 -0.174 -0.241		Model 3	0.714	155.229***	Constant Age Sex BMI PhA Resistance	1443.476*** -9.849*** 40.679** -11.397*** 57.426*** -3.704***	-0.514 0.147 -0.392 0.305 -0.206

PP			Multiple R	egression Models			PP	Multiple Regression Models					
tests	Model	R ²	F	Ind. Variables	В	β	tests	Model	R2	F	Ind. Variables	В	β
CST	Model 1	0.108	12.313***	Constant Age Sex BMI	20.294*** -0.055* 0.675* -0.141***	-0.138 0.118 -0.235	TUG	Model 1	0.307	32.605***	Constant Age Sex BMI	-1.647 0.078*** -0.668*** 0.067***	0.361 -0.319 0.276
	Model 2	0.142	12.607***	Constant Age Sex BMI PhA	12.827*** -0.016 0.351 -0.132*** 0.885**	-0.040 0.061 -0.221 0.226		Model 2	0.320	25.868***	Constant Age Sex BMI PhA	-0.122 0.071*** -0.597*** 0.065*** -0.196*	0.328 -0.285 0.272 -0.124
HG	Model 1	0.774	351.328***	Constant Age Sex BMI	67.182*** -0.571*** 15.534*** -0.013	-0.369 0.704 -0.005	GS	Model 1	0.575	141.297***	Constant Age Sex BMI	5.625*** -0.040*** 0.390*** -0.029***	-0.500 0.347 -0.244
	Model 2	0.781	272.191***	Constant Age Sex BMI Resistance	79.156*** -0.554*** 13.849*** -0.160 -0.017**	-0.358 0.628 -0.066 -0.125		Model 2	0.585	109.820***	Constant Age Sex BMI PhA	44.851*** -0.036*** 0.358*** -0.028*** 0.091**	-0.449 0.318 -0.237 0.118
	Model 3	0.784	220.890***	Constant Age Sex BMI Bosistence	69.060*** -0.508*** 13.702*** -0.138 -0.015*	-0.328 0.621 -0.057 -0.110	6MWT	Model 1	0.682	224.011***	Constant Age Sex BMI	1597.978*** -11.329*** 81.936*** -8.965***	-0.592 0.296 -0.309
AC	Model 1	0.136	11.549***	Resistance PhA Constant Age Sex	1.031* 30.298*** -0.188*** 1.977***	0.067 -0.240 0.261		Model 2	0.701	183.220***	Constant Age Sex BMI PhA	1322.378*** -9.826*** 71.023*** -8.684*** 32.042***	-0.513 0.257 -0.299 0.170
	Model 2	0.155	10.110***	BMI Constant Age Sex BMI Resistance	-0.030 40.573*** -0.200*** 0.993 -0.151* -0.012*	-0.034 -0.255 0.131 -0.174 -0.241		Model 3	0.714	155.229***	Constant Age Sex BMI PhA Resistance	1443.476*** -9.849*** 40.679** -11.397*** 57.426*** -3.704***	-0.514 0.147 -0.392 0.305 -0.206

PP	Multiple Regression Models											
tests	Model R ² F Ind. Variables		Ind. Variables	В	β							
PP score	Model 1	0.471	92.123***	Constant Age Sex BMI	21.221*** -0.219*** -1.003*** -0.159***	-0.630 -0.204 -0.295						
	Model 2	0.500	77.334***	Constant Age Sex BMI PhA	15.362*** -0.187*** -1.245*** -0.156*** 0.702***	-0.539 -0.254 -0.290 0.206						
	Model 3	0.509	63.850***	Constant Age Sex BMI PhA Reactance	17.116*** -0.187*** -1.687*** -0.196*** 1.076*** -0.054*	-0.539 -0.344 -0.363 0.316 -0.166						

Note. PP = physical performance; R^2 = coefficient of determination; F = F statistic; ΔR^2 = adjusted R^2 ; ΔF = changes in F; B = unstandardized regression coefficient; β = standardized coefficient; BMI = body mass index; PhA = phase angle; CST = 30-s chair stand; HG = handgrip strength; AC = 30-s arm curl; TUG = timed up and go; GS = gait speed; 6MWT = 6-min walk test; PPscore = physical performance score; *p < 0.050, **p < 0.010, ***p < 0.001.

Discussion I

Agreement between BIA and DXA parameters

- FFM and FM were strongly correlated
- BIA overestimated FFM and underestimated FM compared with DXA
 - Results are in line with current literature (Fonseca et al. 2018, Ling et al. 2011, Bosy-Westphal et al. 2008)
 - BIA has high potential as an accurate method for analysing body composition
 - if accuracy is sufficient must be assessed on an individual basis

Discussion II

Association between PhA, physical performance, age, BMI and dietary intake

- Major influencing factors of PhA are sex, age, BMI and nutritional status (Stobaus et al. 2012)
- Correlations were found between PhA, 6-min walk test, 30-s chair stand, 30-s arm curl, timed up and go, gait speed, handgrip strength and physical performance score
 - Similar results were found in studies including healthy and hospitalized adults (Tomeleri et al. 2012, Kyle et al. 2012)
 - Plausible explanation: physical function is directly related to muscle mass, so that a decrease in muscle mass is reflected in reduced physical performance as well as a lower PhA (Tieland et al. 2018)
- In contrast to physical function, no correlations were found between PhA & nutritional status
 - Possible explanation: study population was not undernourished, rather overnourished

Discussion III

Hierarchical Multiple Regression

- PhA was identified as a predictor of 6-min walk test, gait speed, timed up and go, 30-s chair stand, handgrip strength and physical performance score
- No impact on 30-s arm curl
 - Possible explanation: percentage of muscle mass is higher in lower than in upper body (Janssen et al. 2000)
 => whole body PhA not as representative for upper body
- Sex, age and BMI as most important factors influencing of physical performance
 - Exception: BMI in handgrip strength and 30-s arm curl test

Discussion IV

Hierarchical Multiple Regression

- High predictability in handgrip strength and 6-min walk test
 - ==> independent on the type of exercise (strength and endurance)
- Low predictability in 30-s chair stand and 30-s arm curl test
 - Possible explanation: both tests focus on strength endurance and coordination ability (Boukadida et al. 2015)
- Physical Performance Score can be used as a global indicator of physical function of upper and lower body

Conclusion

- Higher PhA values are related to better performance in physical function but not with macronutrient intake.
- PhA is an interesting parameter in the context of physical performance
 - ==> avoids the problem of searching for a suitable regression equation
 - ==> suitable for a diverse population.
- In addition, the aspect of cell integrity is particularly interesting in the context of physical fitness, as the muscle cell and its contractile properties play an essential role.

References

Bosy-Westphal, A., et al., Accuracy of bioelectrical impedance consumer devices for measurement of body composition in comparison to whole body magnetic resonance imaging and dual X-ray absorptiometry. Obes Facts, 2008. 1(6): p. 319-24.

Boukadida, A., et al., *Determinants of sit-to-stand tasks in individuals with hemiparesis post stroke: A review*. Ann Phys Rehabil Med, 2015. **58**(3): p. 167-72.

Fonseca, F.R., et al., *Validation of a bioelectrical impedance analysis system for body composition assessment in patients with COPD*. J Bras Pneumol, 2018. 44(4): p. 315-320.

Janssen, I., Heymsfield, S. B., Wang, Z. M., & Ross, R. (2000). *Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr*. Journal of applied physiology (Bethesda, Md. : 1985), 89(1), 81–88. https://doi.org/10.1152/jappl.2000.89.1.81

Kyle, U.G., et al., *Can phase angle determined by bioelectrical impedance analysis assess nutritional risk? A comparison between healthy and hospitalized subjects.* Clin Nutr, 2012. **31**(6): p. 875-81.

Ling, C.H., et al., Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clin Nutr, 2011. 30(5): p. 610-5.

Stobaus, N., et al., Determinants of bioelectrical phase angle in disease. Br J Nutr, 2012. 107(8): p. 1217-20.

Tieland, M., I. Trouwborst, and B.C. Clark, *Skeletal muscle performance and ageing*. J Cachexia Sarcopenia Muscle, 2018. **9**(1): p. 3-19.

Tomeleri, C.M., et al., *Phase Angle Is Moderately Associated With Muscle Quality and Functional Capacity, Independent of Age and Body Composition in Older Women.* J Geriatr Phys Ther, 2019. **42**(4): p. 281-286